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Capillary Equilibria of Dislocated Crystals 
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H. H. Wills Physical Laboratory, University of Bristol, England 

(Received 2 November 1950) 

I t  is s h o w n  t h a t  a d i s loca t ion  w h o s e  B u r g e r s  v e c t o r  exceeds  a cr i t ical  va lue ,  o f  t h e  o rde r  o f  m a g n i t u d e  
10A.,  is on ly  in  e q u i l i b r i u m  w i t h  a n  e m p t y  t u b e  a t  i ts  core.  Th i s  is n o t  t h e  case in  m e t a l s  or  o t h e r  
s imple  c rys ta l l ine  solids,  b u t  is l ike ly  to  be  t h e  case in  p r o t e i n  c rys ta ls ,  w h i c h  there fore ,  u n f o r t u -  
n a t e l y ,  do not provide good models of simple crystalline substances in respect of dislocations. The 
same causes generally give rise to a dimple or crater where a dislocation meets a free surface, and 
the shape of this crater is calculated. Though shallow in form, it is infinitely deep except at a habit 
face of a crystal, where it is of finite depth and may be totally absent. 

1. The equilibrium of  open-cored dislocations 

I t  will be shown that  for a dislocation of large Burgers 
vector* there exists a state of equilibrium in which the 
core of the dislocation is an empty  tube. We shall find, 
however, tha t  this is not the case for the elementary 
dislocations of a typical metal or simple ionic crystal; 
but  it may  be so for substances with large unit  cells, of 
the order of 10A. or more, e.g. some silicates. I t  will 
assuredly be the case in protein crystals. 

For simplicity we consider the case of a screw dis- 
location in a material with isotropic elastic constants. 
Strain-energy densities are of similar magnitude at  
similar distances from dislocations of other orientation 
and in materials of naturally occurring degrees of 
anisotropy in their elastic behaviour. Let there be an 
empty  cylinder of radius r, the dislocation line lying in 
the cylinder. Then the shear strain at the surface of the 
cylinder is b/2nr, where b is the modulus of the Burgers 
vector. There is consequently a strain-energy density 
here of #be/Sn2r 2, where # is the rigidity modulus. 

Suppose tha t  a shell of material of thickness dr 
evaporates from this cylinder and deposits elsewhere, 
on a surface of the material whose radius of curvature is 
negligibly large. The interior cylindrical surface is thus 
enlarged. I f  7 is the specific surface free energy of the 

* The Burgers vector  is the  name we give to wha t  Burgers  
(1939) called the  ' s t r e n g t h '  of a dislocation. This vector  is 
parallel to the  dislocation line in a ' screw'  and  normal  to it in 
an  ' edge '  dislocation, these being only par t icular  cases of the  
general si tuation.  A simple account  of the  geometry  and 
elastic fields of dislocations is given by Cottrell (1949). 

substance, the total  increase in free energy per unit 
length of cylinder is 

dF = 2u~, dr - (#b~/Srr2r ~) 2urdr. (1) 

There is an equilibrium when dF/dr is zero, i.e. when 

r =#b2/STv~. (2) 

Now, empirically the rigidities and surface energies of 
substances tend to vary  in a parallel manner so tha t  
7//e is very roughly a constant length (cf. Table 1), 
a typical value being say ¼A. In consequence r is less 
than 1 A. unless b exceeds 4-5A. The implied assump- 
tion of linear elasticity is then invalid. I f  b were as large 
as 100A., as would be appropriate in protein crystals, 
this objection would disappear, and we may conclude 
tha t  the typical dislocation in such a crystal would, in 
equilibrium, have a hollow core of the order of 1000 A. 
in diameter. This brings the unfortunate conclusion 
tha t  these crystals, the ones in which we can most 
easily see the constituent parts, do not furnish satis- 
factory analogues of simpler crystals with regard to 
dislocations. 

Let us now make an approximate allowance for the 
non-linear elastic behaviour. We shall assume tha t  
stress is related to strain by Hooko's law up to a strain 
of 0.1 and thereafter is constant (as in Figs. 1 (ii) and 
2 (ii)). The strain-energy density is 

/~b2 /87rer ~ ( r >1 5b/Tr); } 

#b/2Orrr-te/200 (r <. 5b/.~). (3) 

Table 1. Approximate rigidities and surface energies of solids 

Rigidi ty  
modulus  Surface energy 

~, ~,/~ 
Substance ( 1011 erg cm. -s ) (erg cm. -~ ) ( 10 .8 era.) 

Copper 4.4 1400 0"32 
Sodium chloride 1"5 155 0" 10 

Argon 0" 106 42 0"40 

Mica 8.0 4500 (in vacuo) 0.56 
400 (in air) 0.05 

At4  

Reference 

Udin  e~ al. (1949) 
Rose (1936), 

Shut t lewor th  (1949) 
Mackenzie & Mott  (1950), 

Shut t lewor th  (1949) 
Obreimoff (1930) 
Orowan (1933) 
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Then for r < 5blzr, (1) is replaced by 

dF=2~rydr-(#b/2Orrr-#/2OO) 2zrrdr, (4) 

i.e. dR/dr = 21ry - #b/10 + 7rr#/100, (5) 
giving an equilibrium at  

r= lOb/Tr- 2007/#. (6) 

There can be no equilibrium with finite r unless 

b > 20~7/#. (7) 

This condition is perhaps not strict enough. I f  we 
assume a more extreme non-linearity of the elastic 
behaviour (as in Figs. I (ifi) and 2 (iii)), such tha t  for 
strains greater than 0.1 the strain-energy density re- 
mains constant (at #/200), then we have for r ~ 5b/Tr: 

dR~dr = 2~ 7, - 2nr#/200. ( 8 ) 

The smallest value of dF/dr occurs at  r=5b/Tr and is 
positive unless b > 401ry//~. (9) 

r 5 b/lt r 5 b/ l t  r 

(i} (ii) Oin 
Fig. 1. Forces tending to contract and enlarge a hole round 

a dislocation: (I) arising from surface energy, 2~y; (II) 
arising from strain energy, /xb~]4rrr in (i) and modified for 
non-linear elastic behaviour on two extreme approximations 
in (ii) and (iii). 

Stress L ~  ii 

. . .  
I I I  

Strain 
Fig. 2. Approximations to the stress-strain law assumed in the 

three cases of Fig. 1. 

I f  this condition is satisfied, there are two positions of 
equilibrium with finite r, a stable one (given by (2)) for 
r> 5b/Tr and an unstable one for r < 5b/Tr. The stable 
equilibrium is less stable than the condition r = 0 unless 
(as one finds by integrating dR/dr) 

b > 40etny/# = 66~y//x. (10) 

Thus if T /#=0.1A.  the assumptions leading to (7) 
and (10) respectively indicate critical values of 7 or 
20A. above which a dislocation in equilibrium will be 
open-cored. 

We may treat  o.ur problem more generally as follows: 
I f  the free-energy density due to strain is a function 
E(e) of the strain e, and the specific surface free energy is 
likewise a function y(e), the increase of free energy per 
unit length of dislocation, from the fully closed condi- 
tion to tha t  with an empty core of radius rl, is 

F(;~)= f~ ' [2ny(e ) -2 , rE(e )]dr  

_ 16(r~) 
--,,0 [2Try(e) dr~de- 27rrE(e) dr~de] de. (11) 

Introducing e = b/27rr, this becomes 

F(rz) = [by(e)/e ~ - b~E(e)/27re a] de. 
/2~rr~ 

02) 

An equilibrium exists at a value of r 1 where the inte- 
grand becomes zero; this represents a more stable state 
than the fully closed condition ff the integral is then 
negative. The generalization is a somewhat empty one, 
while we can make only rough guesses at the functions 
involved. The assumption, implied earlier, tha t  7(e) is 
constant is not an unreasonable approximation in view 
of the fact tha t  solids and their melts have much the 
same surface energy. 

In spite of uncertainties of approximate theory and 
of essential data  it is fair to conclude tha t  dislocations in 
thermodynamic equilibrium will have open cores in 
protein crystals, but  never in metal crystals, while some 
silicate crystals with lattice spacings of the order of 
10A. form borderline cases. Beryl, for example, has 
lattice spacings of approximately 9A. This is the 
minimum possible Burgers vector in the basal plane 
(though a Burgers vector of half the lattice spacing 
parallel to the hexad axis might well be possible). I t  is 
at least an acceptable possibility tha t  dislocations in 
this crystal may be hollow. I t  is to be borne in mind tha t  
when a crystal grows in a solvent medium, y is to be 
decreased by the 'heat  of wett ing'  of the crystal; this 
enhances the stability, likelihood of occurrence, and 
diameter of hollow dislocations. 

2. End craters and end dimples o f  dislocations 

A related problem is tha t  of determining the form of the 
dimple or crater which should occur where a dislocation 
meets the free surface of a crystal. To simplify the 
problem we shall assume a strain-energy density 
around the dislocation, at the surface, which has 
circular symmetry  and is the same as tha t  around the 
dislocation in the interior. This is never actually true, 
the first assumption being violated for an edge and the 
second for both, most seriously for a screw dislocation. 
The violation of the second assumption is less serious 
than immediately appears, since for any displacement 
of the surface wherein it remains parallel to itself, 
the special stress distribution near to the surface 
shifts with the surface, and it is the volume which 
has the asymptotic stress distribution at depth which 
alters. 

The simplest way to interpret the equilibrium form of 
the crystal surface which should result is to regard the 
strain-energy density as a pressure, directed inwards 
towards the material, which balances a pressure directed 
outwards arising from the surface energy, interpreted 
as a surface tension in the manner customary with 
fluids. The validity of either substitution of concepts is 
readily established by expressing the consequences of 
either in differential form. The surface must therefore be 
everywhere concave, the concavity diminishing as 1/r 2 
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at a distance from the dislocation. When E(r)  is the 
strain-energy density, there is equilibrium when 

y ( 1 / R  2 - 1 / R ~ ) = E ( r )  (13) 

= roY/r e, ( 14 ) * 

R 1 and R2 being the two principal radfi of curvature 
shown in Fig. 3 and 

r o = bg/z/8rr~ 7 (15) 

being the equilibrium radius of equation (2), corre- 
sponding to E(r)  =/zbe/8zrgr e. Here, and below, we write 
equations with two right-hand sides, for brevity, the 
first being the more general form and the second valid at  
large r. Now , 

Re=~[1  + (dz/dr)9]½/(dz/dr) (16) 

=r[1 + (dr/dz)e]½, (17) 

while R 1 = - [1 + (dz/dr)2]'~/(d~z/dr ~) (18) 

=[1 + (gr/dz)']~/(gg"r/dzg"). (19) 

fa£e 

/( 
Fig. 3. Co-ordinates  and  principal  cu rva tu re  radii 

for a surface crater .  

Substituting in (13), (14) we obtain either 

dz/dr  dez/dr ~ E(r)  r° (20, 21) 
r[1 + (dz/dr)2] ½ + [1 + (dz/dr)~]t y r ~ 

1 d~r/dz 2 E(r)  r o (22, 23) 
or r[l+(dr/dz)e] ½ [l+(dr/dz)~] ~ - - - : Y - - r  e" 

When dz/dr  is small, we may reduce (20) and (21) to 

r2d2z/dr ~ + rdz/dr  = reE(r) /y  = re, (24, 25) 

and when dr/dz  is small, we may reduce (22) and (23) to 

rg"d2r/dz e - r = - r e E(r ) /y  = - r o. (25, 26) 

The substitution r = r l e  o, where r 1 is any arbitrary 
constant length, brings equation (25) into the form 
d2z/dO e = re, whence 

d z / d r =  (ro/r) In (r/rl) + A / r ,  (27) 

z=  ½r0[ln (r/rl)] ~ + A In (r/rl)4- B.  (28) 

I t  is apparent that  we cannot determine either integra- 
tion constant A or B from a boundary condition at  
infinity. 

* A referee found  it i l luminating to note  here t ha t  the  surface 
thus  defined is also the  equi l ibr ium surface of  a l iquid contain-  
ing a vor tex ,  when  the  equi l ibr ium is de te rmined  b y  surface 
tension ra the r  t han  b y  gravi ty .  

In the ordinary case of a closed-core dislocation, if we 
assume tha t  within the radius 5b/zr the strain-energy 
density is constant and equal to/z/200, then the surface 
in capillary equilibrium in this region is a sphere of 
radius p =400y//z, (29) 

or, for small r, z = z o + #r2/SOOy. (30) 

The surfaces within and without r=5b/rr  must join 
smoothly there. Equating values of dz/dr  

(31) 

A is thus made to vanish by choosing for the arbi trary 
length r 1 r 1 = 5b/zre½ = 0.966b. (32) 

Then, choosing B so that  z = 0 when r = 5b/zr, we have in 

place of (28) Z =  ½re[in (zre½r/5b)]*-~ro. (33) 

This expression (together with the central spherical cup 
defined by (30)) may  be considered to give a tolerable 
approximation for b<20zry//z (which ensures tha t  
dz/dr  never exceeds ¼). This requirement is well satisfied 
in the metals and other simple crystals. 

The bohaviour of (33) at  infinity is a striking example 
of the fact tha t  only an infinite perfect crystal can be 
in equilibrium with an infinite perfect crystal; a single 
dislocation in one of them causes evaporation to make 
a crater which, though shallow in form, is of infinite 
volume and depth. 

Equation (27) may be obtained by direct physical 
argument, by equating the vortical resultant force 
arising f rom'  surface tension' around a circle of radius r 
to the 'line tension' of the dislocation, taking into 
account for the latter only the elastic energy contained 
in a cylinder of the same radius r. Derived in this way, 
it is not immediately obvious tha t  the equation is an 
approximation, but  the case of the open-cored disloca- 
tion suffices to show tha t  it is. 

For the open-cored dislocation we may use (26) to 
discuss the manner in which the tube begins to widen as 
the surface is approached. The equation is reduced by 
substituting p for dr/dz,  and we then obtain 

dr/dz  = (2 In r + 2ro/r + 2A)t. 

A is determined from the boundary condition deep 
down the tube, namely, dz/dr  = O, r = r o . Hence 

d r / d z = [ 2 i n ( r / r o ) - 2 ( 1 - r o / r ) ] ½  (34) 

_ r - r o E 1  4 ( r - r e  I 3 ( r - r 0 t 9  - 
- + + . . . .  ( 3 5 )  

r0 - 3 k  r0 ] 2 \  r0 ] 

When ( r - r o ) , ~ r o ,  we may take the square-bracket 
series to be 1 and obtain 

( r - - r  o) = e~/ro, (36) 

so tha t  the tube widens exponentially to begin with. 
There follows a largo gap in which we cannot use the 

approximations leading either to (36) or to (28), while 
equations (21) and (23) are intolerable. We may, how- 
over, go back to equation (14), 

1/R 1 = 1/R~ - r o / r  ~, (37) 
32-2 
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and construct the solution in small  successive arcs with 
ruler and compasses. All calculations involved m a y  be 
performed geometrically (see Fig. 4). 

The profile shown in Fig. 5 was constructed in this 
way, aiming only at moderate  accuracy. I t  was drawn 
with nine successive centres to cover the range dr/dz = 
0.1 to 0.25, start ing with z = 0 ,  r = l . l r  o, dr/dz=0.1,  
R 1 -- 10 r 0. For larger r it  m a y  be continued with 

z/ro= ½[ln (4r/3ro)Y +4"3, (38) 

which is of the form (28) and fits the constructed curve 
admirab ly  from r/r o = 8 onwards. The slope ¼ occurs at  
r/ro=10.5, z/ro=7.8. The slope 1 occurs at r/ro=3.0, 
z/r o = 4.3. The lat ter  could be usefully chosen as a new 
zero of z, e l iminat ing the constant  term from (38). 

/60 ° 

/ 

Fig. 4. Nomographic construction for 1/Rx= 1/R~--ro/r% 

+ 
÷tz 

~Sro / ~ 1  I ~ 10r0 
+ / ' 1 1  ~ 

5to 

Fig. 5. The surface crater at the end of a hollow dislocation, 
if surface energy is independent of orientation. 

3. Close-packed surfaces 

In  our t rea tment  above we assume tha t  the surface of 
the mater ia l  is infini tesimally displaceable and tha t  its 
surface energy is independent  of orientation. These 
assumptions gravely fail in the case of close-packed or 
' s a tu ra ted '  crystal  faces, at  the orientation of which 
there is a sharply  cusped m i n i m u m  of surface energy, 
and whose properties do not recur in displacement unti l  
an  entire molecular layer has been added or removed. 
Wherever  the crater surface becomes tangent ia l  to such 
a surface as this, it  will be flattened. This is not im- 

por tant  except in the part icular  and interesting case in 
which the flat face itself which the dislocation meets is 
such a surface (generally speaking, a habi t  face of the 
crystal). Now, supposing the Burgers vector of the 
dislocation is parallel  to the free surface (i.e. i t  is an  edge 
dislocation), the crater, i f  any  is formed, must  be in fact  
an amphi thea t re  of monomolecular  steps, and instead of 
discussing the equil ibrium of a displaceable surface we 
should discuss the equi l ibr ium of closed loops of step 
line around the end of the dislocation. On the assump- 
tions which we have made this becomes vi r tua l ly  the 
same problem as the first one we considered, the 
equi l ibr ium of a cylindrical surface. I f  we go on to 
assume tha t  the line energy of a monomolecular  step is 
equal  to surface energy t imes step height, the problems 
become identical. Then if  the dislocation core is filled in 
equil ibrium, there is likewise no surface crater, and  i f  
tll~re is a hollow core it  is a well of uniform diameter,  
r ight up to the surface. In  fact (except at  the absolute 
zero of temperature) entropy terms will lower the edge- 
free energy of a step, as a result of which surface craters 
m a y  appear with closed-core dislocations, and  when the  
dislocation has an open core the entrance to the tube 
will be a rounded one. But  the divergent behaviour  a t  
inf ini ty is now eliminated;  the crater on a close-packed 
surface will be of finite (if not  zero) depth and volume 
for an  edge dislocation. 

The ease of a screw dislocation ending at  a close- 
packed surface is different. There is now an inevi table  
step line running outwards from the end of the disloca- 
t ion (ef. Frank,  1949). In  this case the rota t ional ly  
averaged surface is v i r tual ly  capable of infinitesimal 
displacements by  displacements of the spiral step line 
on the helicoidal surface of the crystal. I t  is best to 
discuss the equi l ibr ium in terms of the equi l ibr ium form 
of this spiral. We shall assume the temperature  to be 
sufficiently high for the specific free energy per uni t  
length of a step, y ' ,  to be regarded as a constant  inde- 
pendent  of orientation. The main  conclusion we reach 
will be still stronger at  temperatures at  which the step- 
line adheres to part icular  crystallographic directions. 
I f  a is the step height, the equi l ibr ium curvature,  I/p, 
will be given by  

~" /p = aE(r) = ab~ /~ /87r2r 2, (39) 

i.e. p=r2/]c, (40) 

where ]c -- ab2/z/81r~7, ' (41) 

is a length essentially similar to r0, above. Since p >~r 
pre t ty  well as soon as r >  b, the curvature considered 
here is always negligible compared with the curvatures 
of step lines, due to supersaturation, which are con- 
sidered in the theory of crystal growth. 

At large r, p}>r, and the line therefore becomes 
approximate ly  radial. Let ~ be the angle which the line 
makes with the radius vector, and p be the distance 
between the origin and the tangent  to the line. Let  c~ 
and s be intrinsic co-ordinates of the line, while r and 
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are polar co-ordinates. Then, subject to the approxima- 
tions which become valid when the line is nearly radial, 

dp dp da r k 
dr d s - r  dss p r" 

Hence p = k In (r/l). (42) 

Further, dr dO_dO ~r r2 ~ l n ( ~ ) .  

Hence 0 = 0~ - (k/r) In (er/l). (43) 

Now z = bO/27r, so that  (43) may be compared with (28). 
The divergence at infinity has been eliminated. O(r), the 
unknown exact solution of the differential equation 
(40), of which (43) is the asymptotic form at large r, 
involves two integration constants, 0oo and 1. According 
to the choice of these, O(r) describes a great variety of 
forms of the step line, including those (with large l) 
which are nearly straight and pass nowhere near the 

Fig. 6. An  equi l ibr ium step line ending on a dislocation 
wi th  no crater .  

Fig. 7. An  equi l ibr ium step line ending at  a crater .  

dislocation. We require 1 to be chosen in such a way that 
the stop line ends on the dislocation. If  the dislocation 
has a hollow core, the step line should j oint the mouth of 
the well tangentially. In the more normal case of a 
closed core, (40) ceases to hold whore I-Iooke's law fails, 
which we shall take as before to be at the radius 5bin. 
It  has little meaning to represent the step-fine as a 
smooth curve within this region, but in so far as it has 
any it should be a circular arc leading to the centre, 
whoso radius of curvature is 25bg/Trglc = 200y'/a#. The 
requirement that  the spiral O(r) should join smoothly on 
to this arc as in Fig. 6 will fix the integration constants. 

There is another region in which we may obtain 
approximate analytical solutions to (40), namely, 
where dr/dO is negligible compared with r, when the 
equation reduces to 

d~r/dO ~ = r -  k, (44) 
with the solution 

r -  k = Ae ° + Be -° = C sinh 0 + D cosh 8. (45) 

Particular cases of these solutions (with A small and B 
zero or C small and D zero) represent closely wrapped 

spirals very near to the circle r=/c (cf. Fig. 7). These 
solutions (i.e. those in which dr/dO is small when r is 
close to/c) are the only ones in which we obtain a spiral 
of many turns. However, k is less than 5b/Tr unless 
b > 40n~/'/att , which is not far short of the requirement 
for the dislocation to have a hollow core. 

The spiral may be continued by ruler-and-compass 
construction from the limit of validity of (45) (Figs. 6 
and 7 were drawn in this way); and thereafter continued 
to infinity by (43). I t  is found to open out rapidly so that  
from r = 1.1/c it passes to infinity in less than one revolu- 
tion of 8. Hence for the normal case of a dislocation 
with closed core there is a negligible surface depression 
of less than one molecular thickness in total depth. 
Only for border-fine cases, in which b is nearly largo 
enough to cause a hollow core, do we get a significant 
crater in the close-packed surface (represented by a 
spiral stop line of many turns). This crater may be of 
any depth, in principle, but its radius is practically 
limited to the macroscopically small value k. 

Note ~ 26 March 1951. At the time the above was 
written, the available observations which came nearest 
to the matter were those of Griffin (1950) on beryl, and 
discussion of this evidence, requiring detailed considera- 
tion of the interpretation of particular photographs, 
was left for later publication by Griffin himself. 

In the interim further observations have become 
available. Dislocations of 15A. in six-layer hexagonal 
carborundum appear visibly hollow (A. R. Verma, 
private communication, to be published). 

On the other hand, 47A. dislocations in long-chain 
paraffins (Dawson & Vand, 1951) are not hollow. The 
reason for this is clearly that  the paraffin molecules can 
be longitudinally displaced to many alternative relative 
positions of only slightly higher energy than that  of 
their proper position in the crystals. One way of 
describing this in the language of dislocations is that  the 
complete dislocation is readily dissociated into a cluster 
of weak partial dislocations. 
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